Dapagliflozin stimulates glucagon secretion at high glucose: experiments and mathematical simulations of human A-cells
نویسندگان
چکیده
Glucagon is one of the main regulators of blood glucose levels and dysfunctional stimulus secretion coupling in pancreatic A-cells is believed to be an important factor during development of diabetes. However, regulation of glucagon secretion is poorly understood. Recently it has been shown that Na(+)/glucose co-transporter (SGLT) inhibitors used for the treatment of diabetes increase glucagon levels in man. Here, we show experimentally that the SGLT2 inhibitor dapagliflozin increases glucagon secretion at high glucose levels both in human and mouse islets, but has little effect at low glucose concentrations. Because glucagon secretion is regulated by electrical activity we developed a mathematical model of A-cell electrical activity based on published data from human A-cells. With operating SGLT2, simulated glucose application leads to cell depolarization and inactivation of the voltage-gated ion channels carrying the action potential, and hence to reduce action potential height. According to our model, inhibition of SGLT2 reduces glucose-induced depolarization via electrical mechanisms. We suggest that blocking SGLTs partly relieves glucose suppression of glucagon secretion by allowing full-scale action potentials to develop. Based on our simulations we propose that SGLT2 is a glucose sensor and actively contributes to regulation of glucagon levels in humans which has clinical implications.
منابع مشابه
Dapagliflozin suppresses glucagon signaling in rodent models of diabetes.
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a class of antidiabetic drug used for the treatment of diabetes. These drugs are thought to lower blood glucose by blocking reabsorption of glucose by SGLT2 in the proximal convoluted tubules of the kidney. To investigate the effect of inhibiting SGLT2 on pancreatic hormones, we treated perfused pancreata from rats with chemically induced di...
متن کاملChanges in Levels of Biomarkers Associated with Adipocyte Function and Insulin and Glucagon Kinetics During Treatment with Dapagliflozin Among Obese Type 2 Diabetes Mellitus Patients
OBJECTIVES This study aimed to investigate changes in levels of biomarkers associated with adipocyte function and insulin and glucagon kinetics after a meal tolerance test (MTT) during treatment with dapagliflozin among obese type 2 diabetes mellitus (T2DM) patients. METHODS T2DM patients with hemoglobin A1c (HbA1c) levels >6.5 % and body mass index (BMI) >25 kg/m2 were treated with dapaglifl...
متن کاملA KATP Channel-Dependent Pathway within α Cells Regulates Glucagon Release from Both Rodent and Human Islets of Langerhans
Glucagon, secreted from pancreatic islet alpha cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring beta cells, or to an intrinsic glucose sensing by the alpha cells themselves. We examined hormone secretion and Ca(2+) responses of alpha and beta cells...
متن کاملDapagliflozin Enhances Fat Oxidation and Ketone Production in Patients With Type 2 Diabetes
OBJECTIVE Insulin resistance is associated with mitochondrial dysfunction and decreased ATP synthesis. Treatment of individuals with type 2 diabetes mellitus (T2DM) with sodium-glucose transporter 2 inhibitors (SGLT2i) improves insulin sensitivity. However, recent reports have demonstrated development of ketoacidosis in subjects with T2DM treated with SGLT2i. The current study examined the effe...
متن کاملRole of leptin in the regulation of glucagon-like peptide-1 secretion.
Glucagon-like peptide-1 (GLP-1), released from intestinal endocrine L cells, is a potent insulinotropic hormone. GLP-1 secretion is diminished in obese patients. Because obesity is linked to abnormal leptin signaling, we hypothesized that leptin may modulate GLP-1 secretion. Leptin significantly stimulated GLP-1 secretion (by up to 250% of control) from fetal rat intestinal cells, a mouse L cel...
متن کامل